Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines
نویسندگان
چکیده
Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer.
منابع مشابه
Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe
The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We i...
متن کاملThe dynamic cytoskeleton: backbone of dendritic spine plasticity.
Dendritic spines are small actin-rich protrusions on the surface of dendrites whose morphological and molecular plasticity play key roles in learning and memory. Both the form and function of spines are critically dependent on the actin cytoskeleton. However, new research, using electron microscopy and live-cell super-resolution microscopy indicates that the actin cytoskeleton is more complex a...
متن کاملMolecular regulation of dendritic spine shape and function.
Dendritic spines are discrete membrane protrusions from dendritic shafts where the large majority of excitatory synapses are located. Their highly heterogeneous morphology is thought to be the morphological basis for synaptic plasticity. Electron microscopy and time-lapse imaging studies have suggested that the shape and number of spines can change after long-term potentiation (LTP), although t...
متن کاملRapid Functional Maturation of Nascent Dendritic Spines
Spine growth and retraction with synapse formation and elimination plays an important role in shaping brain circuits during development and in the adult brain, yet the temporal relationship between spine morphogenesis and the formation of functional synapses remains poorly defined. We imaged hippocampal pyramidal neurons to identify spines of different ages. We then used two-photon glutamate un...
متن کاملTransient ECM protease activity promotes synaptic plasticity
Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly con...
متن کامل